Skip to content

Latest commit

 

History

History
2336 lines (2123 loc) · 77.5 KB

Thread源码解析.md

File metadata and controls

2336 lines (2123 loc) · 77.5 KB

简介

每个线程都有一个优先级,优先级高的先执行,优先级低的后执行。每个线程都可以创建一个新的线程,新的线程优先级默认跟创建它的线程一致。只有守护线程可以创建守护线程。

守护线程

Java程序入口就是由JVM启动main线程,main线程又可以启动其他线程。当所有线程都运行结束时,JVM退出,进程结束。

如果有一个线程没有退出,JVM进程就不会退出。所以,必须保证所有线程都能及时结束。

但是有一种线程的目的就是无限循环,例如,一个定时触发任务的线程:

class TimerThread extends Thread {
@Override
public void run() {
while (true) {
System.out.println(LocalTime.now());
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
break;
}
}
}
}

如果这个线程不结束,JVM进程就无法结束。问题是,由谁负责结束这个线程?

然而这类线程经常没有负责人来负责结束它们。但是,当其他线程结束时,JVM进程又必须要结束,怎么办?

答案是使用守护线程(Daemon Thread)。

守护线程是指为其他线程服务的线程。在JVM中,所有非守护线程都执行完毕后,无论有没有守护线程,虚拟机都会自动退出。

因此,JVM退出时,不必关心守护线程是否已结束。

如何创建守护线程呢?方法和普通线程一样,只是在调用start()方法前,调用setDaemon(true)把该线程标记为守护线程:

Thread t = new MyThread();
t.setDaemon(true);
t.start();

在守护线程中,编写代码要注意:守护线程不能持有任何需要关闭的资源,例如打开文件等,因为虚拟机退出时,守护线程没有任何机会来关闭文件,这会导致数据丢失。

小总结

  • 守护线程是为其他线程服务的线程;

  • 所有非守护线程都执行完毕后,虚拟机退出;

  • 守护线程不能持有需要关闭的资源(如打开文件等)。

线程的状态

Thread的状态有6中,它把就绪状态和运行状态都归为RUNNABLE了,下面状态图细分了一下


注意:

调用obj.wait()的线程需要先获取obj的monitor,wait()会释放obj的monitor并进入等待态。所以wait()/notify()都要与synchronized联用。

阻塞与等待的区别

阻塞:当一个线程试图获取对象锁(非java.util.concurrent库中的锁,即synchronized),而该锁被其他线程持有,则该线程进入阻塞状态。它的特点是使用简单,由JVM调度器来决定唤醒自己,而不需要由另一个线程来显式唤醒自己,不响应中断。 等待:当一个线程等待另一个线程通知调度器一个条件时,该线程进入等待状态。它的特点是需要等待另一个线程显式地唤醒自己,实现灵活,语义更丰富,可响应中断。例如调用:Object.wait()、Thread.join()以及等待Lock或Condition。

需要强调的是虽然synchronized和JUC里的Lock都实现锁的功能,但线程进入的状态是不一样的。synchronized会让线程进入阻塞态,而JUC里的Lock是用LockSupport.park()/unpark()来实现阻塞/唤醒的,会让线程进入等待态。但话又说回来,虽然等锁时进入的状态不一样,但被唤醒后又都进入runnable态,从行为效果来看又是一样的。

源码

源码也不是很复杂,native方法比较多

start()

新启一个线程执行其run()方法,一个线程只能start一次。主要是通过调用native start0()来实现。

/** 该方法可以创建一个新的线程出来,返回的仍然是主线程
* 启动线程,线程状态从 NEW 进入 RUNNABLE
*
* @exception  IllegalThreadStateException  if the thread was already
*               started.
* @see        #run()
* @see        #stop()
*/
public synchronized void start() {
/**
* This method is not invoked for the main method thread or "system"
* group threads created/set up by the VM. Any new functionality added
* to this method in the future may have to also be added to the VM.
*
* A zero status value corresponds to state "NEW".
*/
if (threadStatus != 0)
throw new IllegalThreadStateException();

/* Notify the group that this thread is about to be started
* so that it can be added to the group's list of threads
* and the group's unstarted count can be decremented. */
// 将当前线程加入到所在的线程组,记录为活跃线程
group.add(this);

boolean started = false;
try {
// 这里会创建一个新的线程,执行完成之后,新的线程已经在运行了,既 target 的内容已经在运行了
start0();
started = true;
} finally {
try {
// 如果失败,把线程从线程组中删除
if (!started) {
group.threadStartFailed(this);
}
} catch (Throwable ignore) {
/* do nothing. If start0 threw a Throwable then
it will be passed up the call stack */
}
}
}

private native void start0();

run()

run()方法是不需要用户来调用的,当通过start方法启动一个线程之后,当该线程获得了CPU执行时间,便进入run方法体去执行具体的任务。注意,继承Thread类必须重写run方法,在run方法中定义具体要执行的任务。

sleep()

sleep方法有两个重载版本:

sleep(long millis)     //参数为毫秒

sleep(long millis,int nanoseconds)    //第一参数为毫秒,第二个参数为纳秒

sleep相当于让线程睡眠,交出CPU,让CPU去执行其他的任务。

但是有一点要非常注意,sleep方法不会释放锁,也就是说如果当前线程持有对某个对象的锁,则即使调用sleep方法,其他线程也无法访问这个对象。

yield()

调用yield方法会让当前线程交出CPU权限,让CPU重新调度,也有可能重新选中自己。它跟sleep方法类似,同样不会释放锁。但是yield不能控制具体的交出CPU的时间,另外,yield方法只能让拥有相同优先级的线程有获取CPU执行时间的机会。

注意,调用yield方法并不会让线程进入阻塞状态,而是让线程重回就绪状态,它只需要等待重新获取CPU执行时间,这一点是和sleep方法不一样的。

join()

join方法有三个重载版本:

// 等待线程运行完
public final void join() throws InterruptedException {
join(0);
}
// 使该方法的调用者所在的线程进入 WAITING 或 TIMED_WAITING 状态,直到当前线程死亡,或者等待超时之后,再去执行上述调用者线程
join(long millis)     //参数为毫秒
join(long millis,int nanoseconds)    //第一参数为毫秒,第二个参数为纳秒

join()实际是利用了wait(),只不过它不用等待notify()/notifyAll(),且不受其影响。它结束的条件是:1)等待时间到;2)目标线程已经run完(通过isAlive()来判断)。

public final synchronized void join(long millis)
throws InterruptedException {
long base = System.currentTimeMillis();
long now = 0;

if (millis < 0) {
throw new IllegalArgumentException("timeout value is negative");
}
//0则需要一直等到目标线程run完
if (millis == 0) {
while (isAlive()) {
wait(0);
}
} else {
// 如果目标线程未run完且阻塞时间未到,那么调用线程会一直等待。
while (isAlive()) {
long delay = millis - now;
if (delay <= 0) {
break;
}
wait(delay);
now = System.currentTimeMillis() - base;
}
}
}

interrupt()

public void interrupt() {
if (this != Thread.currentThread())
checkAccess();

synchronized (blockerLock) {
Interruptible b = blocker;
if (b != null) {
interrupt0();           // Just to set the interrupt flag
b.interrupt(this);
return;
}
}
interrupt0();
}

此操作会将中断线程,并重置中断标志位,至于线程作何动作那要看线程了。

  • 如果线程sleep()、wait()、join()等处于等待状态,那么线程会定时检查中断状态位如果发现中断状态位为true,则会在这些阻塞方法调用处抛出InterruptedException异常,并且在抛出异常后立即将线程的中断状态位清除,即重新设置为false。抛出异常是为了线程从等待状态醒过来,并在结束线程前让程序员有足够的时间来处理中断请求。
  • 如果线程正在运行、争用synchronized、lock()等,那么是不可中断的,他们会忽略。

可以通过以下三种方式来判断中断:

1)isInterrupted()

此方法只会读取线程的中断标志位,并不会重置。

public boolean isInterrupted() {
return isInterrupted(false);
}

2)interrupted()

返回线程是否被中断过,会重置中断标志位

public static boolean interrupted() {
return currentThread().isInterrupted(true);
}

此方法读取线程的中断标志位,并会重置。

3)throw InterruptException

抛出该异常的同时,会重置中断标志位。

其他注释

可以不看

package java.lang;

import java.lang.ref.Reference;
import java.lang.ref.ReferenceQueue;
import java.lang.ref.WeakReference;
import java.security.AccessController;
import java.security.AccessControlContext;
import java.security.PrivilegedAction;
import java.util.Map;
import java.util.HashMap;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.locks.LockSupport;
import sun.nio.ch.Interruptible;
import sun.reflect.CallerSensitive;
import sun.reflect.Reflection;
import sun.security.util.SecurityConstants;


/**
* A <i>thread</i> is a thread of execution in a program. The Java
* Virtual Machine allows an application to have multiple threads of
* execution running concurrently.
* <p>
* Every thread has a priority. Threads with higher priority are
* executed in preference to threads with lower priority. Each thread
* may or may not also be marked as a daemon. When code running in
* some thread creates a new <code>Thread</code> object, the new
* thread has its priority initially set equal to the priority of the
* creating thread, and is a daemon thread if and only if the
* creating thread is a daemon.
* <p>
* When a Java Virtual Machine starts up, there is usually a single
* non-daemon thread (which typically calls the method named
* <code>main</code> of some designated class). The Java Virtual
* Machine continues to execute threads until either of the following
* occurs:
* <ul>
* <li>The <code>exit</code> method of class <code>Runtime</code> has been
*     called and the security manager has permitted the exit operation
*     to take place.
* <li>All threads that are not daemon threads have died, either by
*     returning from the call to the <code>run</code> method or by
*     throwing an exception that propagates beyond the <code>run</code>
*     method.
* </ul>
* <p>
* There are two ways to create a new thread of execution. One is to
* declare a class to be a subclass of <code>Thread</code>. This
* subclass should override the <code>run</code> method of class
* <code>Thread</code>. An instance of the subclass can then be
* allocated and started. For example, a thread that computes primes
* larger than a stated value could be written as follows:
* <hr><blockquote><pre>
*     class PrimeThread extends Thread {
*         long minPrime;
*         PrimeThread(long minPrime) {
*             this.minPrime = minPrime;
*         }
*
*         public void run() {
*             // compute primes larger than minPrime
*             &nbsp;.&nbsp;.&nbsp;.
*         }
*     }
* </pre></blockquote><hr>
* <p>
* The following code would then create a thread and start it running:
* <blockquote><pre>
*     PrimeThread p = new PrimeThread(143);
*     p.start();
* </pre></blockquote>
* <p>
* The other way to create a thread is to declare a class that
* implements the <code>Runnable</code> interface. That class then
* implements the <code>run</code> method. An instance of the class can
* then be allocated, passed as an argument when creating
* <code>Thread</code>, and started. The same example in this other
* style looks like the following:
* <hr><blockquote><pre>
*     class PrimeRun implements Runnable {
*         long minPrime;
*         PrimeRun(long minPrime) {
*             this.minPrime = minPrime;
*         }
*
*         public void run() {
*             // compute primes larger than minPrime
*             &nbsp;.&nbsp;.&nbsp;.
*         }
*     }
* </pre></blockquote><hr>
* <p>
* The following code would then create a thread and start it running:
* <blockquote><pre>
*     PrimeRun p = new PrimeRun(143);
*     new Thread(p).start();
* </pre></blockquote>
* <p>
* Every thread has a name for identification purposes. More than
* one thread may have the same name. If a name is not specified when
* a thread is created, a new name is generated for it.
* <p>
* Unless otherwise noted, passing a {@code null} argument to a constructor
* or method in this class will cause a {@link NullPointerException} to be
* thrown.
*
* @author  unascribed
* @see     Runnable
* @see     Runtime#exit(int)
* @see     #run()
* @see     #stop()
* @since   JDK1.0
*/
public
class Thread implements Runnable {
/* Make sure registerNatives is the first thing <clinit> does. */
private static native void registerNatives();
static {
registerNatives();
}
/**
* 线程名称
*/
private volatile String name;
/**
* 优先级
*/
private int            priority;
private Thread         threadQ;
private long           eetop;

/* Whether or not to single_step this thread. */
private boolean     single_step;

/* Whether or not the thread is a daemon thread. */
/**
* 是否是守护线程,true 是守护线程。如果是守护线程的话,是不能够阻止 JVM 的退出的,级别很低
*/
private boolean     daemon = false;

/* JVM state */
private boolean     stillborn = false;

/**
* 实际被执行的对象
*/
private Runnable target;

/**
* 该线程的线程组
*/
private ThreadGroup group;

/* The context ClassLoader for this thread */
private ClassLoader contextClassLoader;

/* The inherited AccessControlContext of this thread */
private AccessControlContext inheritedAccessControlContext;

/* For autonumbering anonymous threads. */
/**
* 给线程自动生成名称所用
*/
private static int threadInitNumber;
/**
* 同一时刻只会有一个线程修改 threadInitNumber 的值,线程安全
*
* @return
*/
private static synchronized int nextThreadNum() {
return threadInitNumber++;
}

/**
* ThreadLocal 的 ThreadLocalMap 是线程的一个属性,所以在多线程环境下 threadLocals 是线程安全的
*/
ThreadLocal.ThreadLocalMap threadLocals = null;

/**
* 当创建子线程时,子线程可以得到父线程的 inheritableThreadLocals
*/
ThreadLocal.ThreadLocalMap inheritableThreadLocals = null;

/**
* 此线程请求的堆栈大小
*/
private long stackSize;

/*
* JVM-private state that persists after native thread termination.
*/
private long nativeParkEventPointer;

/*
* Thread ID
*/
private long tid;

/* For generating thread ID */
private static long threadSeqNumber;

/* Java thread status for tools,
* initialized to indicate thread 'not yet started'
*/

private volatile int threadStatus = 0;


private static synchronized long nextThreadID() {
return ++threadSeqNumber;
}

/**
* The argument supplied to the current call to
* java.util.concurrent.locks.LockSupport.park.
* Set by (private) java.util.concurrent.locks.LockSupport.setBlocker
* Accessed using java.util.concurrent.locks.LockSupport.getBlocker
*  此对象不为null时说明线程进入了park(阻塞)状态,参见 LockSupport
*/
volatile Object parkBlocker;

/* The object in which this thread is blocked in an interruptible I/O
* operation, if any.  The blocker's interrupt method should be invoked
* after setting this thread's interrupt status.
* 线程中断回调标记,设置此标记后,可在线程被中断时调用标记对象的回调方法
*/
private volatile Interruptible blocker;
private final Object blockerLock = new Object();

/* Set the blocker field; invoked via sun.misc.SharedSecrets from java.nio code
为当前线程设置一个线程中断回调标记,以便在线程被中断时调用该标记的回调方法
*/
void blockedOn(Interruptible b) {
synchronized (blockerLock) {
blocker = b;
}
}

/**
* The minimum priority that a thread can have.
* 最低优先级
*/
public final static int MIN_PRIORITY = 1;

/**
* The default priority that is assigned to a thread.
* 默认优先级
*/
public final static int NORM_PRIORITY = 5;

/**
* The maximum priority that a thread can have.
* 最高优先级
*/
public final static int MAX_PRIORITY = 10;

/**
* Returns a reference to the currently executing thread object.
* 返回当前正在执行的线程对象的引用
* @return  the currently executing thread.
*/
public static native Thread currentThread();

/**
* A hint to the scheduler that the current thread is willing to yield
* its current use of a processor. The scheduler is free to ignore this
* hint.
*
* <p> Yield is a heuristic attempt to improve relative progression
* between threads that would otherwise over-utilise a CPU. Its use
* should be combined with detailed profiling and benchmarking to
* ensure that it actually has the desired effect.
*
* <p> It is rarely appropriate to use this method. It may be useful
* for debugging or testing purposes, where it may help to reproduce
* bugs due to race conditions. It may also be useful when designing
* concurrency control constructs such as the ones in the
* {@link java.util.concurrent.locks} package.
* 返回当前正在执行的线程对象的引用
* 让步不是不执行,也有可能重新选中自己
* 当前线程让出 cpu 时间片,重新抢占执行权
*/
public static native void yield();

/**
* Causes the currently executing thread to sleep (temporarily cease
* execution) for the specified number of milliseconds, subject to
* the precision and accuracy of system timers and schedulers. The thread
* does not lose ownership of any monitors.
* 沉睡,锁不会释放,在 millis 毫秒之后会自己醒来
* 使线程进入 TIMED_WAITING 状态,millis毫秒后自己醒来(不释放锁)
*
* @param  millis
*         the length of time to sleep in milliseconds
*
* @throws  IllegalArgumentException
*          if the value of {@code millis} is negative
*
* @throws  InterruptedException
*          if any thread has interrupted the current thread. The
*          <i>interrupted status</i> of the current thread is
*          cleared when this exception is thrown.
*/
public static native void sleep(long millis) throws InterruptedException;

/**
* Causes the currently executing thread to sleep (temporarily cease
* execution) for the specified number of milliseconds plus the specified
* number of nanoseconds, subject to the precision and accuracy of system
* timers and schedulers. The thread does not lose ownership of any
* monitors.
* 使线程进入TIMED_WAITING状态
* 至少等待millis毫秒,nanos是一个纳秒级的附加时间,用来微调millis参数(不释放锁)
* @param  millis
*         the length of time to sleep in milliseconds
*
* @param  nanos
*         {@code 0-999999} additional nanoseconds to sleep
*
* @throws  IllegalArgumentException
*          if the value of {@code millis} is negative, or the value of
*          {@code nanos} is not in the range {@code 0-999999}
*
* @throws  InterruptedException
*          if any thread has interrupted the current thread. The
*          <i>interrupted status</i> of the current thread is
*          cleared when this exception is thrown.
*/
public static void sleep(long millis, int nanos)
throws InterruptedException {
if (millis < 0) {
throw new IllegalArgumentException("timeout value is negative");
}

if (nanos < 0 || nanos > 999999) {
throw new IllegalArgumentException(
"nanosecond timeout value out of range");
}

if (nanos >= 500000 || (nanos != 0 && millis == 0)) {
millis++;
}

sleep(millis);
}

/**
* Initializes a Thread with the current AccessControlContext.
* @see #init(ThreadGroup,Runnable,String,long,AccessControlContext,boolean)
*/
private void init(ThreadGroup g, Runnable target, String name,
long stackSize) {
init(g, target, name, stackSize, null, true);
}

/**
* Initializes a Thread.
* 初始化一个线程
* @param g the Thread group
* @param target the object whose run() method gets called
* @param name the name of the new Thread
* @param stackSize the desired stack size for the new thread, or
*        zero to indicate that this parameter is to be ignored.
* @param acc the AccessControlContext to inherit, or
*            AccessController.getContext() if null
* @param inheritThreadLocals if {@code true}, inherit initial values for
*            inheritable thread-locals from the constructing thread
*/
private void init(ThreadGroup g, Runnable target, String name,
long stackSize, AccessControlContext acc,
boolean inheritThreadLocals) {
if (name == null) {
throw new NullPointerException("name cannot be null");
}

this.name = name;

Thread parent = currentThread();
SecurityManager security = System.getSecurityManager();
if (g == null) {
/* Determine if it's an applet or not */

/* If there is a security manager, ask the security manager
what to do. */
if (security != null) {
g = security.getThreadGroup();
}

/* If the security doesn't have a strong opinion of the matter
use the parent thread group. */
if (g == null) {
g = parent.getThreadGroup();
}
}

/* checkAccess regardless of whether or not threadgroup is
explicitly passed in. */
g.checkAccess();

/*
* Do we have the required permissions?
*/
if (security != null) {
if (isCCLOverridden(getClass())) {
security.checkPermission(SUBCLASS_IMPLEMENTATION_PERMISSION);
}
}

g.addUnstarted();

this.group = g;
this.daemon = parent.isDaemon();
this.priority = parent.getPriority();
if (security == null || isCCLOverridden(parent.getClass()))
this.contextClassLoader = parent.getContextClassLoader();
else
this.contextClassLoader = parent.contextClassLoader;
// 当父线程的 inheritableThreadLocals 的值不为空时
// 会把 inheritableThreadLocals 里面的值全部传递给子线程
this.inheritedAccessControlContext =
acc != null ? acc : AccessController.getContext();
this.target = target;
setPriority(priority);
if (inheritThreadLocals && parent.inheritableThreadLocals != null)
this.inheritableThreadLocals =
ThreadLocal.createInheritedMap(parent.inheritableThreadLocals);
/* Stash the specified stack size in case the VM cares */
this.stackSize = stackSize;

/* Set thread ID */
tid = nextThreadID();
}

/**
* Throws CloneNotSupportedException as a Thread can not be meaningfully
* cloned. Construct a new Thread instead.
*
* @throws  CloneNotSupportedException
*          always
*/
@Override
protected Object clone() throws CloneNotSupportedException {
throw new CloneNotSupportedException();
}

/**
* Allocates a new {@code Thread} object. This constructor has the same
* effect as {@linkplain #Thread(ThreadGroup,Runnable,String) Thread}
* {@code (null, null, gname)}, where {@code gname} is a newly generated
* name. Automatically generated names are of the form
* {@code "Thread-"+}<i>n</i>, where <i>n</i> is an integer.
*/
public Thread() {
init(null, null, "Thread-" + nextThreadNum(), 0);
}

/**
* Allocates a new {@code Thread} object. This constructor has the same
* effect as {@linkplain #Thread(ThreadGroup,Runnable,String) Thread}
* {@code (null, target, gname)}, where {@code gname} is a newly generated
* name. Automatically generated names are of the form
* {@code "Thread-"+}<i>n</i>, where <i>n</i> is an integer.
*
* @param  target
*         the object whose {@code run} method is invoked when this thread
*         is started. If {@code null}, this classes {@code run} method does
*         nothing.
*/
public Thread(Runnable target) {
init(null, target, "Thread-" + nextThreadNum(), 0);
}

/**
* Creates a new Thread that inherits the given AccessControlContext.
* This is not a public constructor.
*/
Thread(Runnable target, AccessControlContext acc) {
init(null, target, "Thread-" + nextThreadNum(), 0, acc, false);
}

/**
* Allocates a new {@code Thread} object. This constructor has the same
* effect as {@linkplain #Thread(ThreadGroup,Runnable,String) Thread}
* {@code (group, target, gname)} ,where {@code gname} is a newly generated
* name. Automatically generated names are of the form
* {@code "Thread-"+}<i>n</i>, where <i>n</i> is an integer.
*
* @param  group
*         the thread group. If {@code null} and there is a security
*         manager, the group is determined by {@linkplain
*         SecurityManager#getThreadGroup SecurityManager.getThreadGroup()}.
*         If there is not a security manager or {@code
*         SecurityManager.getThreadGroup()} returns {@code null}, the group
*         is set to the current thread's thread group.
*
* @param  target
*         the object whose {@code run} method is invoked when this thread
*         is started. If {@code null}, this thread's run method is invoked.
*
* @throws  SecurityException
*          if the current thread cannot create a thread in the specified
*          thread group
*/
public Thread(ThreadGroup group, Runnable target) {
init(group, target, "Thread-" + nextThreadNum(), 0);
}

/**
* Allocates a new {@code Thread} object. This constructor has the same
* effect as {@linkplain #Thread(ThreadGroup,Runnable,String) Thread}
* {@code (null, null, name)}.
*
* @param   name
*          the name of the new thread
*/
public Thread(String name) {
init(null, null, name, 0);
}

/**
* Allocates a new {@code Thread} object. This constructor has the same
* effect as {@linkplain #Thread(ThreadGroup,Runnable,String) Thread}
* {@code (group, null, name)}.
*
* @param  group
*         the thread group. If {@code null} and there is a security
*         manager, the group is determined by {@linkplain
*         SecurityManager#getThreadGroup SecurityManager.getThreadGroup()}.
*         If there is not a security manager or {@code
*         SecurityManager.getThreadGroup()} returns {@code null}, the group
*         is set to the current thread's thread group.
*
* @param  name
*         the name of the new thread
*
* @throws  SecurityException
*          if the current thread cannot create a thread in the specified
*          thread group
*/
public Thread(ThreadGroup group, String name) {
init(group, null, name, 0);
}

/**
* Allocates a new {@code Thread} object. This constructor has the same
* effect as {@linkplain #Thread(ThreadGroup,Runnable,String) Thread}
* {@code (null, target, name)}.
*
* @param  target
*         the object whose {@code run} method is invoked when this thread
*         is started. If {@code null}, this thread's run method is invoked.
*
* @param  name
*         the name of the new thread
*/
public Thread(Runnable target, String name) {
init(null, target, name, 0);
}

/**
* Allocates a new {@code Thread} object so that it has {@code target}
* as its run object, has the specified {@code name} as its name,
* and belongs to the thread group referred to by {@code group}.
*
* <p>If there is a security manager, its
* {@link SecurityManager#checkAccess(ThreadGroup) checkAccess}
* method is invoked with the ThreadGroup as its argument.
*
* <p>In addition, its {@code checkPermission} method is invoked with
* the {@code RuntimePermission("enableContextClassLoaderOverride")}
* permission when invoked directly or indirectly by the constructor
* of a subclass which overrides the {@code getContextClassLoader}
* or {@code setContextClassLoader} methods.
*
* <p>The priority of the newly created thread is set equal to the
* priority of the thread creating it, that is, the currently running
* thread. The method {@linkplain #setPriority setPriority} may be
* used to change the priority to a new value.
*
* <p>The newly created thread is initially marked as being a daemon
* thread if and only if the thread creating it is currently marked
* as a daemon thread. The method {@linkplain #setDaemon setDaemon}
* may be used to change whether or not a thread is a daemon.
*
* @param  group
*         the thread group. If {@code null} and there is a security
*         manager, the group is determined by {@linkplain
*         SecurityManager#getThreadGroup SecurityManager.getThreadGroup()}.
*         If there is not a security manager or {@code
*         SecurityManager.getThreadGroup()} returns {@code null}, the group
*         is set to the current thread's thread group.
*
* @param  target
*         the object whose {@code run} method is invoked when this thread
*         is started. If {@code null}, this thread's run method is invoked.
*
* @param  name
*         the name of the new thread
*
* @throws  SecurityException
*          if the current thread cannot create a thread in the specified
*          thread group or cannot override the context class loader methods.
*/
public Thread(ThreadGroup group, Runnable target, String name) {
init(group, target, name, 0);
}

/**
* Allocates a new {@code Thread} object so that it has {@code target}
* as its run object, has the specified {@code name} as its name,
* and belongs to the thread group referred to by {@code group}, and has
* the specified <i>stack size</i>.
*
* <p>This constructor is identical to {@link
* #Thread(ThreadGroup,Runnable,String)} with the exception of the fact
* that it allows the thread stack size to be specified.  The stack size
* is the approximate number of bytes of address space that the virtual
* machine is to allocate for this thread's stack.  <b>The effect of the
* {@code stackSize} parameter, if any, is highly platform dependent.</b>
*
* <p>On some platforms, specifying a higher value for the
* {@code stackSize} parameter may allow a thread to achieve greater
* recursion depth before throwing a {@link StackOverflowError}.
* Similarly, specifying a lower value may allow a greater number of
* threads to exist concurrently without throwing an {@link
* OutOfMemoryError} (or other internal error).  The details of
* the relationship between the value of the <tt>stackSize</tt> parameter
* and the maximum recursion depth and concurrency level are
* platform-dependent.  <b>On some platforms, the value of the
* {@code stackSize} parameter may have no effect whatsoever.</b>
*
* <p>The virtual machine is free to treat the {@code stackSize}
* parameter as a suggestion.  If the specified value is unreasonably low
* for the platform, the virtual machine may instead use some
* platform-specific minimum value; if the specified value is unreasonably
* high, the virtual machine may instead use some platform-specific
* maximum.  Likewise, the virtual machine is free to round the specified
* value up or down as it sees fit (or to ignore it completely).
*
* <p>Specifying a value of zero for the {@code stackSize} parameter will
* cause this constructor to behave exactly like the
* {@code Thread(ThreadGroup, Runnable, String)} constructor.
*
* <p><i>Due to the platform-dependent nature of the behavior of this
* constructor, extreme care should be exercised in its use.
* The thread stack size necessary to perform a given computation will
* likely vary from one JRE implementation to another.  In light of this
* variation, careful tuning of the stack size parameter may be required,
* and the tuning may need to be repeated for each JRE implementation on
* which an application is to run.</i>
*
* <p>Implementation note: Java platform implementers are encouraged to
* document their implementation's behavior with respect to the
* {@code stackSize} parameter.
*
*
* @param  group
*         the thread group. If {@code null} and there is a security
*         manager, the group is determined by {@linkplain
*         SecurityManager#getThreadGroup SecurityManager.getThreadGroup()}.
*         If there is not a security manager or {@code
*         SecurityManager.getThreadGroup()} returns {@code null}, the group
*         is set to the current thread's thread group.
*
* @param  target
*         the object whose {@code run} method is invoked when this thread
*         is started. If {@code null}, this thread's run method is invoked.
*
* @param  name
*         the name of the new thread
*
* @param  stackSize
*         the desired stack size for the new thread, or zero to indicate
*         that this parameter is to be ignored.
*
* @throws  SecurityException
*          if the current thread cannot create a thread in the specified
*          thread group
*
* @since 1.4
*/
public Thread(ThreadGroup group, Runnable target, String name,
long stackSize) {
init(group, target, name, stackSize);
}

/**
* Causes this thread to begin execution; the Java Virtual Machine
* calls the <code>run</code> method of this thread.
* <p>
* The result is that two threads are running concurrently: the
* current thread (which returns from the call to the
* <code>start</code> method) and the other thread (which executes its
* <code>run</code> method).
* <p>
* It is never legal to start a thread more than once.
* In particular, a thread may not be restarted once it has completed
* execution.
* 该方法可以创建一个新的线程出来,返回的仍然是主线程
* 启动线程,线程状态从 NEW 进入 RUNNABLE
*
* @exception  IllegalThreadStateException  if the thread was already
*               started.
* @see        #run()
* @see        #stop()
*/
public synchronized void start() {
/**
* This method is not invoked for the main method thread or "system"
* group threads created/set up by the VM. Any new functionality added
* to this method in the future may have to also be added to the VM.
*
* A zero status value corresponds to state "NEW".
*/
if (threadStatus != 0)
throw new IllegalThreadStateException();

/* Notify the group that this thread is about to be started
* so that it can be added to the group's list of threads
* and the group's unstarted count can be decremented. */
// 将当前线程加入到所在的线程组,记录为活跃线程
group.add(this);

boolean started = false;
try {
// 这里会创建一个新的线程,执行完成之后,新的线程已经在运行了,既 target 的内容已经在运行了
start0();
started = true;
} finally {
try {
// 如果失败,把线程从线程组中删除
if (!started) {
group.threadStartFailed(this);
}
} catch (Throwable ignore) {
/* do nothing. If start0 threw a Throwable then
it will be passed up the call stack */
}
}
}

private native void start0();

/**
* If this thread was constructed using a separate
* <code>Runnable</code> run object, then that
* <code>Runnable</code> object's <code>run</code> method is called;
* otherwise, this method does nothing and returns.
* <p>
* Subclasses of <code>Thread</code> should override this method.
*
* @see     #start()
* @see     #stop()
* @see     #Thread(ThreadGroup, Runnable, String)
*/
@Override
public void run() {
if (target != null) {
target.run();
}
}

/**
* This method is called by the system to give a Thread
* a chance to clean up before it actually exits.
*/
private void exit() {
if (group != null) {
group.threadTerminated(this);
group = null;
}
/* Aggressively null out all reference fields: see bug 4006245 */
target = null;
/* Speed the release of some of these resources */
threadLocals = null;
inheritableThreadLocals = null;
inheritedAccessControlContext = null;
blocker = null;
uncaughtExceptionHandler = null;
}

/**
* Forces the thread to stop executing.
* <p>
* If there is a security manager installed, its <code>checkAccess</code>
* method is called with <code>this</code>
* as its argument. This may result in a
* <code>SecurityException</code> being raised (in the current thread).
* <p>
* If this thread is different from the current thread (that is, the current
* thread is trying to stop a thread other than itself), the
* security manager's <code>checkPermission</code> method (with a
* <code>RuntimePermission("stopThread")</code> argument) is called in
* addition.
* Again, this may result in throwing a
* <code>SecurityException</code> (in the current thread).
* <p>
* The thread represented by this thread is forced to stop whatever
* it is doing abnormally and to throw a newly created
* <code>ThreadDeath</code> object as an exception.
* <p>
* It is permitted to stop a thread that has not yet been started.
* If the thread is eventually started, it immediately terminates.
* <p>
* An application should not normally try to catch
* <code>ThreadDeath</code> unless it must do some extraordinary
* cleanup operation (note that the throwing of
* <code>ThreadDeath</code> causes <code>finally</code> clauses of
* <code>try</code> statements to be executed before the thread
* officially dies).  If a <code>catch</code> clause catches a
* <code>ThreadDeath</code> object, it is important to rethrow the
* object so that the thread actually dies.
* <p>
* The top-level error handler that reacts to otherwise uncaught
* exceptions does not print out a message or otherwise notify the
* application if the uncaught exception is an instance of
* <code>ThreadDeath</code>.
*
* @exception  SecurityException  if the current thread cannot
*               modify this thread.
* @see        #interrupt()
* @see        #checkAccess()
* @see        #run()
* @see        #start()
* @see        ThreadDeath
* @see        ThreadGroup#uncaughtException(Thread,Throwable)
* @see        SecurityManager#checkAccess(Thread)
* @see        SecurityManager#checkPermission
* @deprecated This method is inherently unsafe.  Stopping a thread with
*       Thread.stop causes it to unlock all of the monitors that it
*       has locked (as a natural consequence of the unchecked
*       <code>ThreadDeath</code> exception propagating up the stack).  If
*       any of the objects previously protected by these monitors were in
*       an inconsistent state, the damaged objects become visible to
*       other threads, potentially resulting in arbitrary behavior.  Many
*       uses of <code>stop</code> should be replaced by code that simply
*       modifies some variable to indicate that the target thread should
*       stop running.  The target thread should check this variable
*       regularly, and return from its run method in an orderly fashion
*       if the variable indicates that it is to stop running.  If the
*       target thread waits for long periods (on a condition variable,
*       for example), the <code>interrupt</code> method should be used to
*       interrupt the wait.
*       For more information, see
*       <a href="{@docRoot}/../technotes/guides/concurrency/threadPrimitiveDeprecation.html">Why
*       are Thread.stop, Thread.suspend and Thread.resume Deprecated?</a>.
*
* 不建议使用
*/
@Deprecated
public final void stop() {
SecurityManager security = System.getSecurityManager();
if (security != null) {
checkAccess();
if (this != Thread.currentThread()) {
security.checkPermission(SecurityConstants.STOP_THREAD_PERMISSION);
}
}
// A zero status value corresponds to "NEW", it can't change to
// not-NEW because we hold the lock.
if (threadStatus != 0) {
resume(); // Wake up thread if it was suspended; no-op otherwise
}

// The VM can handle all thread states
stop0(new ThreadDeath());
}

/**
* Throws {@code UnsupportedOperationException}.
*
* @param obj ignored
*
* @deprecated This method was originally designed to force a thread to stop
*        and throw a given {@code Throwable} as an exception. It was
*        inherently unsafe (see {@link #stop()} for details), and furthermore
*        could be used to generate exceptions that the target thread was
*        not prepared to handle.
*        For more information, see
*        <a href="{@docRoot}/../technotes/guides/concurrency/threadPrimitiveDeprecation.html">Why
*        are Thread.stop, Thread.suspend and Thread.resume Deprecated?</a>.
* 不建议使用
*/
@Deprecated
public final synchronized void stop(Throwable obj) {
throw new UnsupportedOperationException();
}

/**
* Interrupts this thread.
*
* <p> Unless the current thread is interrupting itself, which is
* always permitted, the {@link #checkAccess() checkAccess} method
* of this thread is invoked, which may cause a {@link
* SecurityException} to be thrown.
*
* <p> If this thread is blocked in an invocation of the {@link
* Object#wait() wait()}, {@link Object#wait(long) wait(long)}, or {@link
* Object#wait(long, int) wait(long, int)} methods of the {@link Object}
* class, or of the {@link #join()}, {@link #join(long)}, {@link
* #join(long, int)}, {@link #sleep(long)}, or {@link #sleep(long, int)},
* methods of this class, then its interrupt status will be cleared and it
* will receive an {@link InterruptedException}.
*
* <p> If this thread is blocked in an I/O operation upon an {@link
* java.nio.channels.InterruptibleChannel InterruptibleChannel}
* then the channel will be closed, the thread's interrupt
* status will be set, and the thread will receive a {@link
* java.nio.channels.ClosedByInterruptException}.
*
* <p> If this thread is blocked in a {@link java.nio.channels.Selector}
* then the thread's interrupt status will be set and it will return
* immediately from the selection operation, possibly with a non-zero
* value, just as if the selector's {@link
* java.nio.channels.Selector#wakeup wakeup} method were invoked.
*
* <p> If none of the previous conditions hold then this thread's interrupt
* status will be set. </p>
*
* <p> Interrupting a thread that is not alive need not have any effect.
* 中断未激活的线程不会产生任何效果。
* @throws  SecurityException
*          if the current thread cannot modify this thread
*
* @revised 6.0
* @spec JSR-51
*/
public void interrupt() {
if (this != Thread.currentThread())
checkAccess();

synchronized (blockerLock) {
Interruptible b = blocker;
if (b != null) {
interrupt0();           // Just to set the interrupt flag
b.interrupt(this);
return;
}
}
interrupt0();
}

/**
* Tests whether the current thread has been interrupted.  The
* <i>interrupted status</i> of the thread is cleared by this method.  In
* other words, if this method were to be called twice in succession, the
* second call would return false (unless the current thread were
* interrupted again, after the first call had cleared its interrupted
* status and before the second call had examined it).
*
* <p>A thread interruption ignored because a thread was not alive
* at the time of the interrupt will be reflected by this method
* returning false.
* 返回线程被中断过,会重置中断标志位
*
* @return  <code>true</code> if the current thread has been interrupted;
*          <code>false</code> otherwise.
* @see #isInterrupted()
* @revised 6.0
*/
public static boolean interrupted() {
return currentThread().isInterrupted(true);
}

/**
* Tests whether this thread has been interrupted.  The <i>interrupted
* status</i> of the thread is unaffected by this method.
*
* <p>A thread interruption ignored because a thread was not alive
* at the time of the interrupt will be reflected by this method
* returning false.
* 返回线程被中断过,不会会重置中断标志位
* @return  <code>true</code> if this thread has been interrupted;
*          <code>false</code> otherwise.
* @see     #interrupted()
* @revised 6.0
*/
public boolean isInterrupted() {
return isInterrupted(false);
}

/**
* Tests if some Thread has been interrupted.  The interrupted state
* is reset or not based on the value of ClearInterrupted that is
* passed.
*/
private native boolean isInterrupted(boolean ClearInterrupted);

/**
* Throws {@link NoSuchMethodError}.
*
* @deprecated This method was originally designed to destroy this
*     thread without any cleanup. Any monitors it held would have
*     remained locked. However, the method was never implemented.
*     If if were to be implemented, it would be deadlock-prone in
*     much the manner of {@link #suspend}. If the target thread held
*     a lock protecting a critical system resource when it was
*     destroyed, no thread could ever access this resource again.
*     If another thread ever attempted to lock this resource, deadlock
*     would result. Such deadlocks typically manifest themselves as
*     "frozen" processes. For more information, see
*     <a href="{@docRoot}/../technotes/guides/concurrency/threadPrimitiveDeprecation.html">
*     Why are Thread.stop, Thread.suspend and Thread.resume Deprecated?</a>.
* @throws NoSuchMethodError always
* 不推荐使用
*/
@Deprecated
public void destroy() {
throw new NoSuchMethodError();
}

/**
* Tests if this thread is alive. A thread is alive if it has
* been started and has not yet died.
*  判断当前线程是否仍然存活(没有到达 TERMINATED 状态)
* @return  <code>true</code> if this thread is alive;
*          <code>false</code> otherwise.
*/
public final native boolean isAlive();

/**
* Suspends this thread.
* <p>
* First, the <code>checkAccess</code> method of this thread is called
* with no arguments. This may result in throwing a
* <code>SecurityException </code>(in the current thread).
* <p>
* If the thread is alive, it is suspended and makes no further
* progress unless and until it is resumed.
*
* @exception  SecurityException  if the current thread cannot modify
*               this thread.
* @see #checkAccess
* @deprecated   This method has been deprecated, as it is
*   inherently deadlock-prone.  If the target thread holds a lock on the
*   monitor protecting a critical system resource when it is suspended, no
*   thread can access this resource until the target thread is resumed. If
*   the thread that would resume the target thread attempts to lock this
*   monitor prior to calling <code>resume</code>, deadlock results.  Such
*   deadlocks typically manifest themselves as "frozen" processes.
*   For more information, see
*   <a href="{@docRoot}/../technotes/guides/concurrency/threadPrimitiveDeprecation.html">Why
*   are Thread.stop, Thread.suspend and Thread.resume Deprecated?</a>.
*   不推荐使用
*/
@Deprecated
public final void suspend() {
checkAccess();
suspend0();
}

/**
* Resumes a suspended thread.
* <p>
* First, the <code>checkAccess</code> method of this thread is called
* with no arguments. This may result in throwing a
* <code>SecurityException</code> (in the current thread).
* <p>
* If the thread is alive but suspended, it is resumed and is
* permitted to make progress in its execution.
*
* @exception  SecurityException  if the current thread cannot modify this
*               thread.
* @see        #checkAccess
* @see        #suspend()
* @deprecated This method exists solely for use with {@link #suspend},
*     which has been deprecated because it is deadlock-prone.
*     For more information, see
*     <a href="{@docRoot}/../technotes/guides/concurrency/threadPrimitiveDeprecation.html">Why
*     are Thread.stop, Thread.suspend and Thread.resume Deprecated?</a>.
*     不推荐使用
*/
@Deprecated
public final void resume() {
checkAccess();
resume0();
}

/**
* Changes the priority of this thread.
* <p>
* First the <code>checkAccess</code> method of this thread is called
* with no arguments. This may result in throwing a
* <code>SecurityException</code>.
* <p>
* Otherwise, the priority of this thread is set to the smaller of
* the specified <code>newPriority</code> and the maximum permitted
* priority of the thread's thread group.
*
* @param newPriority priority to set this thread to
* @exception  IllegalArgumentException  If the priority is not in the
*               range <code>MIN_PRIORITY</code> to
*               <code>MAX_PRIORITY</code>.
* @exception  SecurityException  if the current thread cannot modify
*               this thread.
* @see        #getPriority
* @see        #checkAccess()
* @see        #getThreadGroup()
* @see        #MAX_PRIORITY
* @see        #MIN_PRIORITY
* @see        ThreadGroup#getMaxPriority()
* 为当前线程设置优先级
*/
public final void setPriority(int newPriority) {
ThreadGroup g;
checkAccess();
if (newPriority > MAX_PRIORITY || newPriority < MIN_PRIORITY) {
throw new IllegalArgumentException();
}
if((g = getThreadGroup()) != null) {
if (newPriority > g.getMaxPriority()) {
newPriority = g.getMaxPriority();
}
setPriority0(priority = newPriority);
}
}

/**
* Returns this thread's priority.
*
* @return  this thread's priority.
* @see     #setPriority
*/
public final int getPriority() {
return priority;
}

/**
* Changes the name of this thread to be equal to the argument
* <code>name</code>.
* <p>
* First the <code>checkAccess</code> method of this thread is called
* with no arguments. This may result in throwing a
* <code>SecurityException</code>.
* 改变当前线程名字
* @param      name   the new name for this thread.
* @exception  SecurityException  if the current thread cannot modify this
*               thread.
* @see        #getName
* @see        #checkAccess()
*/
public final synchronized void setName(String name) {
checkAccess();
if (name == null) {
throw new NullPointerException("name cannot be null");
}

this.name = name;
if (threadStatus != 0) {
setNativeName(name);
}
}

/**
* Returns this thread's name.
*
* @return  this thread's name.
* @see     #setName(String)
*/
public final String getName() {
return name;
}

/**
* Returns the thread group to which this thread belongs.
* This method returns null if this thread has died
* (been stopped).
*
* @return  this thread's thread group.
*/
public final ThreadGroup getThreadGroup() {
return group;
}

/**
* Returns an estimate of the number of active threads in the current
* thread's {@linkplain java.lang.ThreadGroup thread group} and its
* subgroups. Recursively iterates over all subgroups in the current
* thread's thread group.
*
* <p> The value returned is only an estimate because the number of
* threads may change dynamically while this method traverses internal
* data structures, and might be affected by the presence of certain
* system threads. This method is intended primarily for debugging
* and monitoring purposes.
*
* 递归获取当前线程所在线程组的所有活跃线程数量(可能与实际数量有出入,因为线程数量动态变化),建议仅用作监视目的
*
* @return  an estimate of the number of active threads in the current
*          thread's thread group and in any other thread group that
*          has the current thread's thread group as an ancestor
*/
public static int activeCount() {
return currentThread().getThreadGroup().activeCount();
}

/**
* Copies into the specified array every active thread in the current
* thread's thread group and its subgroups. This method simply
* invokes the {@link java.lang.ThreadGroup#enumerate(Thread[])}
* method of the current thread's thread group.
*
* <p> An application might use the {@linkplain #activeCount activeCount}
* method to get an estimate of how big the array should be, however
* <i>if the array is too short to hold all the threads, the extra threads
* are silently ignored.</i>  If it is critical to obtain every active
* thread in the current thread's thread group and its subgroups, the
* invoker should verify that the returned int value is strictly less
* than the length of {@code tarray}.
*
* <p> Due to the inherent race condition in this method, it is recommended
* that the method only be used for debugging and monitoring purposes.
* 递归获取当前线程所在线程组的所有线程(可能与实际状态有出入,因为线程数量动态变化),建议仅用作监视目的
* @param  tarray
*         an array into which to put the list of threads
*
* @return  the number of threads put into the array
*
* @throws  SecurityException
*          if {@link java.lang.ThreadGroup#checkAccess} determines that
*          the current thread cannot access its thread group
*/
public static int enumerate(Thread tarray[]) {
return currentThread().getThreadGroup().enumerate(tarray);
}

/**
* Counts the number of stack frames in this thread. The thread must
* be suspended.
*
* @return     the number of stack frames in this thread.
* @exception  IllegalThreadStateException  if this thread is not
*             suspended.
* @deprecated The definition of this call depends on {@link #suspend},
*             which is deprecated.  Further, the results of this call
*             were never well-defined.
*/
@Deprecated
public native int countStackFrames();

/**
* Waits at most {@code millis} milliseconds for this thread to
* die. A timeout of {@code 0} means to wait forever.
*
* <p> This implementation uses a loop of {@code this.wait} calls
* conditioned on {@code this.isAlive}. As a thread terminates the
* {@code this.notifyAll} method is invoked. It is recommended that
* applications not use {@code wait}, {@code notify}, or
* {@code notifyAll} on {@code Thread} instances.
* 使该方法的调用者所在的线程进入 WAITING 或 TIMED_WAITING 状态,直到当前线程死亡,或者等待超时之后,再去执行上述调用者线程
* @param  millis
*         the time to wait in milliseconds
*
* @throws  IllegalArgumentException
*          if the value of {@code millis} is negative
*
* @throws  InterruptedException
*          if any thread has interrupted the current thread. The
*          <i>interrupted status</i> of the current thread is
*          cleared when this exception is thrown.
*/
public final synchronized void join(long millis)
throws InterruptedException {
long base = System.currentTimeMillis();
long now = 0;

if (millis < 0) {
throw new IllegalArgumentException("timeout value is negative");
}

if (millis == 0) {
while (isAlive()) {
wait(0);
}
} else {
while (isAlive()) {
long delay = millis - now;
if (delay <= 0) {
break;
}
wait(delay);
now = System.currentTimeMillis() - base;
}
}
}

/**
* Waits at most {@code millis} milliseconds plus
* {@code nanos} nanoseconds for this thread to die.
*
* <p> This implementation uses a loop of {@code this.wait} calls
* conditioned on {@code this.isAlive}. As a thread terminates the
* {@code this.notifyAll} method is invoked. It is recommended that
* applications not use {@code wait}, {@code notify}, or
* {@code notifyAll} on {@code Thread} instances.
*
* @param  millis
*         the time to wait in milliseconds
*
* @param  nanos
*         {@code 0-999999} additional nanoseconds to wait
*
* @throws  IllegalArgumentException
*          if the value of {@code millis} is negative, or the value
*          of {@code nanos} is not in the range {@code 0-999999}
*
* @throws  InterruptedException
*          if any thread has interrupted the current thread. The
*          <i>interrupted status</i> of the current thread is
*          cleared when this exception is thrown.
*/
public final synchronized void join(long millis, int nanos)
throws InterruptedException {

if (millis < 0) {
throw new IllegalArgumentException("timeout value is negative");
}

if (nanos < 0 || nanos > 999999) {
throw new IllegalArgumentException(
"nanosecond timeout value out of range");
}

if (nanos >= 500000 || (nanos != 0 && millis == 0)) {
millis++;
}

join(millis);
}

/**
* Waits for this thread to die.
*
* <p> An invocation of this method behaves in exactly the same
* way as the invocation
*
* <blockquote>
* {@linkplain #join(long) join}{@code (0)}
* </blockquote>
*
* @throws  InterruptedException
*          if any thread has interrupted the current thread. The
*          <i>interrupted status</i> of the current thread is
*          cleared when this exception is thrown.
*/
public final void join() throws InterruptedException {
join(0);
}

/**
* Prints a stack trace of the current thread to the standard error stream.
* This method is used only for debugging.
*
* @see     Throwable#printStackTrace()
*/
public static void dumpStack() {
new Exception("Stack trace").printStackTrace();
}

/**
* Marks this thread as either a {@linkplain #isDaemon daemon} thread
* or a user thread. The Java Virtual Machine exits when the only
* threads running are all daemon threads.
*
* <p> This method must be invoked before the thread is started.
*
* @param  on
*         if {@code true}, marks this thread as a daemon thread
*
* @throws  IllegalThreadStateException
*          if this thread is {@linkplain #isAlive alive}
*
* @throws  SecurityException
*          if {@link #checkAccess} determines that the current
*          thread cannot modify this thread
*/
public final void setDaemon(boolean on) {
checkAccess();
if (isAlive()) {
throw new IllegalThreadStateException();
}
daemon = on;
}

/**
* Tests if this thread is a daemon thread.
*
* @return  <code>true</code> if this thread is a daemon thread;
*          <code>false</code> otherwise.
* @see     #setDaemon(boolean)
*/
public final boolean isDaemon() {
return daemon;
}

/**
* Determines if the currently running thread has permission to
* modify this thread.
* <p>
* If there is a security manager, its <code>checkAccess</code> method
* is called with this thread as its argument. This may result in
* throwing a <code>SecurityException</code>.
*
* @exception  SecurityException  if the current thread is not allowed to
*               access this thread.
* @see        SecurityManager#checkAccess(Thread)
*/
public final void checkAccess() {
SecurityManager security = System.getSecurityManager();
if (security != null) {
security.checkAccess(this);
}
}

/**
* Returns a string representation of this thread, including the
* thread's name, priority, and thread group.
*
* @return  a string representation of this thread.
*/
public String toString() {
ThreadGroup group = getThreadGroup();
if (group != null) {
return "Thread[" + getName() + "," + getPriority() + "," +
group.getName() + "]";
} else {
return "Thread[" + getName() + "," + getPriority() + "," +
"" + "]";
}
}

/**
* Returns the context ClassLoader for this Thread. The context
* ClassLoader is provided by the creator of the thread for use
* by code running in this thread when loading classes and resources.
* If not {@linkplain #setContextClassLoader set}, the default is the
* ClassLoader context of the parent Thread. The context ClassLoader of the
* primordial thread is typically set to the class loader used to load the
* application.
*
* <p>If a security manager is present, and the invoker's class loader is not
* {@code null} and is not the same as or an ancestor of the context class
* loader, then this method invokes the security manager's {@link
* SecurityManager#checkPermission(java.security.Permission) checkPermission}
* method with a {@link RuntimePermission RuntimePermission}{@code
* ("getClassLoader")} permission to verify that retrieval of the context
* class loader is permitted.
*
* @return  the context ClassLoader for this Thread, or {@code null}
*          indicating the system class loader (or, failing that, the
*          bootstrap class loader)
*
* @throws  SecurityException
*          if the current thread cannot get the context ClassLoader
*
* @since 1.2
*/
@CallerSensitive
public ClassLoader getContextClassLoader() {
if (contextClassLoader == null)
return null;
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
ClassLoader.checkClassLoaderPermission(contextClassLoader,
Reflection.getCallerClass());
}
return contextClassLoader;
}

/**
* Sets the context ClassLoader for this Thread. The context
* ClassLoader can be set when a thread is created, and allows
* the creator of the thread to provide the appropriate class loader,
* through {@code getContextClassLoader}, to code running in the thread
* when loading classes and resources.
*
* <p>If a security manager is present, its {@link
* SecurityManager#checkPermission(java.security.Permission) checkPermission}
* method is invoked with a {@link RuntimePermission RuntimePermission}{@code
* ("setContextClassLoader")} permission to see if setting the context
* ClassLoader is permitted.
*
* @param  cl
*         the context ClassLoader for this Thread, or null  indicating the
*         system class loader (or, failing that, the bootstrap class loader)
*
* @throws  SecurityException
*          if the current thread cannot set the context ClassLoader
*
* @since 1.2
*/
public void setContextClassLoader(ClassLoader cl) {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
sm.checkPermission(new RuntimePermission("setContextClassLoader"));
}
contextClassLoader = cl;
}

/**
* Returns <tt>true</tt> if and only if the current thread holds the
* monitor lock on the specified object.
*
* <p>This method is designed to allow a program to assert that
* the current thread already holds a specified lock:
* <pre>
*     assert Thread.holdsLock(obj);
* </pre>
*
* @param  obj the object on which to test lock ownership
* @throws NullPointerException if obj is <tt>null</tt>
* @return <tt>true</tt> if the current thread holds the monitor lock on
*         the specified object.
* @since 1.4
*/
public static native boolean holdsLock(Object obj);

private static final StackTraceElement[] EMPTY_STACK_TRACE
= new StackTraceElement[0];

/**
* Returns an array of stack trace elements representing the stack dump
* of this thread.  This method will return a zero-length array if
* this thread has not started, has started but has not yet been
* scheduled to run by the system, or has terminated.
* If the returned array is of non-zero length then the first element of
* the array represents the top of the stack, which is the most recent
* method invocation in the sequence.  The last element of the array
* represents the bottom of the stack, which is the least recent method
* invocation in the sequence.
*
* <p>If there is a security manager, and this thread is not
* the current thread, then the security manager's
* <tt>checkPermission</tt> method is called with a
* <tt>RuntimePermission("getStackTrace")</tt> permission
* to see if it's ok to get the stack trace.
*
* <p>Some virtual machines may, under some circumstances, omit one
* or more stack frames from the stack trace.  In the extreme case,
* a virtual machine that has no stack trace information concerning
* this thread is permitted to return a zero-length array from this
* method.
*
* @return an array of <tt>StackTraceElement</tt>,
* each represents one stack frame.
*
* @throws SecurityException
*        if a security manager exists and its
*        <tt>checkPermission</tt> method doesn't allow
*        getting the stack trace of thread.
* @see SecurityManager#checkPermission
* @see RuntimePermission
* @see Throwable#getStackTrace
*
* @since 1.5
*/
public StackTraceElement[] getStackTrace() {
if (this != Thread.currentThread()) {
// check for getStackTrace permission
SecurityManager security = System.getSecurityManager();
if (security != null) {
security.checkPermission(
SecurityConstants.GET_STACK_TRACE_PERMISSION);
}
// optimization so we do not call into the vm for threads that
// have not yet started or have terminated
if (!isAlive()) {
return EMPTY_STACK_TRACE;
}
StackTraceElement[][] stackTraceArray = dumpThreads(new Thread[] {this});
StackTraceElement[] stackTrace = stackTraceArray[0];
// a thread that was alive during the previous isAlive call may have
// since terminated, therefore not having a stacktrace.
if (stackTrace == null) {
stackTrace = EMPTY_STACK_TRACE;
}
return stackTrace;
} else {
// Don't need JVM help for current thread
return (new Exception()).getStackTrace();
}
}

/**
* Returns a map of stack traces for all live threads.
* The map keys are threads and each map value is an array of
* <tt>StackTraceElement</tt> that represents the stack dump
* of the corresponding <tt>Thread</tt>.
* The returned stack traces are in the format specified for
* the {@link #getStackTrace getStackTrace} method.
*
* <p>The threads may be executing while this method is called.
* The stack trace of each thread only represents a snapshot and
* each stack trace may be obtained at different time.  A zero-length
* array will be returned in the map value if the virtual machine has
* no stack trace information about a thread.
*
* <p>If there is a security manager, then the security manager's
* <tt>checkPermission</tt> method is called with a
* <tt>RuntimePermission("getStackTrace")</tt> permission as well as
* <tt>RuntimePermission("modifyThreadGroup")</tt> permission
* to see if it is ok to get the stack trace of all threads.
*
* @return a <tt>Map</tt> from <tt>Thread</tt> to an array of
* <tt>StackTraceElement</tt> that represents the stack trace of
* the corresponding thread.
*
* @throws SecurityException
*        if a security manager exists and its
*        <tt>checkPermission</tt> method doesn't allow
*        getting the stack trace of thread.
* @see #getStackTrace
* @see SecurityManager#checkPermission
* @see RuntimePermission
* @see Throwable#getStackTrace
*
* @since 1.5
*/
public static Map<Thread, StackTraceElement[]> getAllStackTraces() {
// check for getStackTrace permission
SecurityManager security = System.getSecurityManager();
if (security != null) {
security.checkPermission(
SecurityConstants.GET_STACK_TRACE_PERMISSION);
security.checkPermission(
SecurityConstants.MODIFY_THREADGROUP_PERMISSION);
}

// Get a snapshot of the list of all threads
Thread[] threads = getThreads();
StackTraceElement[][] traces = dumpThreads(threads);
Map<Thread, StackTraceElement[]> m = new HashMap<>(threads.length);
for (int i = 0; i < threads.length; i++) {
StackTraceElement[] stackTrace = traces[i];
if (stackTrace != null) {
m.put(threads[i], stackTrace);
}
// else terminated so we don't put it in the map
}
return m;
}


private static final RuntimePermission SUBCLASS_IMPLEMENTATION_PERMISSION =
new RuntimePermission("enableContextClassLoaderOverride");

/** cache of subclass security audit results */
/* Replace with ConcurrentReferenceHashMap when/if it appears in a future
* release */
private static class Caches {
/** cache of subclass security audit results */
static final ConcurrentMap<WeakClassKey,Boolean> subclassAudits =
new ConcurrentHashMap<>();

/** queue for WeakReferences to audited subclasses */
static final ReferenceQueue<Class<?>> subclassAuditsQueue =
new ReferenceQueue<>();
}

/**
* Verifies that this (possibly subclass) instance can be constructed
* without violating security constraints: the subclass must not override
* security-sensitive non-final methods, or else the
* "enableContextClassLoaderOverride" RuntimePermission is checked.
*/
private static boolean isCCLOverridden(Class<?> cl) {
if (cl == Thread.class)
return false;

processQueue(Caches.subclassAuditsQueue, Caches.subclassAudits);
WeakClassKey key = new WeakClassKey(cl, Caches.subclassAuditsQueue);
Boolean result = Caches.subclassAudits.get(key);
if (result == null) {
result = Boolean.valueOf(auditSubclass(cl));
Caches.subclassAudits.putIfAbsent(key, result);
}

return result.booleanValue();
}

/**
* Performs reflective checks on given subclass to verify that it doesn't
* override security-sensitive non-final methods.  Returns true if the
* subclass overrides any of the methods, false otherwise.
*/
private static boolean auditSubclass(final Class<?> subcl) {
Boolean result = AccessController.doPrivileged(
new PrivilegedAction<Boolean>() {
public Boolean run() {
for (Class<?> cl = subcl;
cl != Thread.class;
cl = cl.getSuperclass())
{
try {
cl.getDeclaredMethod("getContextClassLoader", new Class<?>[0]);
return Boolean.TRUE;
} catch (NoSuchMethodException ex) {
}
try {
Class<?>[] params = {ClassLoader.class};
cl.getDeclaredMethod("setContextClassLoader", params);
return Boolean.TRUE;
} catch (NoSuchMethodException ex) {
}
}
return Boolean.FALSE;
}
}
);
return result.booleanValue();
}

private native static StackTraceElement[][] dumpThreads(Thread[] threads);
private native static Thread[] getThreads();

/**
* Returns the identifier of this Thread.  The thread ID is a positive
* <tt>long</tt> number generated when this thread was created.
* The thread ID is unique and remains unchanged during its lifetime.
* When a thread is terminated, this thread ID may be reused.
*
* @return this thread's ID.
* @since 1.5
*/
public long getId() {
return tid;
}

/**
* 线程的状态
* A thread state.  A thread can be in one of the following states:
* <ul>
* <li>{@link #NEW}<br>
*     A thread that has not yet started is in this state.
*     </li>
* <li>{@link #RUNNABLE}<br>
*     A thread executing in the Java virtual machine is in this state.
*     </li>
* <li>{@link #BLOCKED}<br>
*     A thread that is blocked waiting for a monitor lock
*     is in this state.
*     </li>
* <li>{@link #WAITING}<br>
*     A thread that is waiting indefinitely for another thread to
*     perform a particular action is in this state.
*     </li>
* <li>{@link #TIMED_WAITING}<br>
*     A thread that is waiting for another thread to perform an action
*     for up to a specified waiting time is in this state.
*     </li>
* <li>{@link #TERMINATED}<br>
*     A thread that has exited is in this state.
*     </li>
* </ul>
*
* <p>
* A thread can be in only one state at a given point in time.
* These states are virtual machine states which do not reflect
* any operating system thread states.
*
* @since   1.5
* @see #getState
*/
public enum State {
/**
* Thread state for a thread which has not yet started.
* 尚未启动的线程处于这种状态
*/
NEW,

/**
* Thread state for a runnable thread.  A thread in the runnable
* state is executing in the Java virtual machine but it may
* be waiting for other resources from the operating system
* such as processor.
* 就绪状态或者运行状态
*/
RUNNABLE,

/**
* Thread state for a thread blocked waiting for a monitor lock.
* A thread in the blocked state is waiting for a monitor lock
* to enter a synchronized block/method or
* reenter a synchronized block/method after calling
* {@link Object#wait() Object.wait}.
* 阻塞的,可能是在等待进入同步块/方法时被阻塞的
*/
BLOCKED,

/**
* Thread state for a waiting thread.
* A thread is in the waiting state due to calling one of the
* following methods:
* <ul>
*   <li>{@link Object#wait() Object.wait} with no timeout</li>
*   <li>{@link #join() Thread.join} with no timeout</li>
*   <li>{@link LockSupport#park() LockSupport.park}</li>
* </ul>
*
* <p>A thread in the waiting state is waiting for another thread to
* perform a particular action.
*
* For example, a thread that has called <tt>Object.wait()</tt>
* on an object is waiting for another thread to call
* <tt>Object.notify()</tt> or <tt>Object.notifyAll()</tt> on
* that object. A thread that has called <tt>Thread.join()</tt>
* is waiting for a specified thread to terminate.
* 等待状态,等着别的线程唤醒
*/
WAITING,

/**
* Thread state for a waiting thread with a specified waiting time.
* A thread is in the timed waiting state due to calling one of
* the following methods with a specified positive waiting time:
* <ul>
*   <li>{@link #sleep Thread.sleep}</li>
*   <li>{@link Object#wait(long) Object.wait} with timeout</li>
*   <li>{@link #join(long) Thread.join} with timeout</li>
*   <li>{@link LockSupport#parkNanos LockSupport.parkNanos}</li>
*   <li>{@link LockSupport#parkUntil LockSupport.parkUntil}</li>
* </ul>
* 等待一定的时间,自动唤醒
*/
TIMED_WAITING,

/**
* Thread state for a terminated thread.
* The thread has completed execution.
* 结束状态
*/
TERMINATED;
}

/**
* Returns the state of this thread.
* This method is designed for use in monitoring of the system state,
* not for synchronization control.
*
* @return this thread's state.
* @since 1.5
*/
public State getState() {
// get current thread state
return sun.misc.VM.toThreadState(threadStatus);
}

// Added in JSR-166

/**
* Interface for handlers invoked when a <tt>Thread</tt> abruptly
* terminates due to an uncaught exception.
* <p>When a thread is about to terminate due to an uncaught exception
* the Java Virtual Machine will query the thread for its
* <tt>UncaughtExceptionHandler</tt> using
* {@link #getUncaughtExceptionHandler} and will invoke the handler's
* <tt>uncaughtException</tt> method, passing the thread and the
* exception as arguments.
* If a thread has not had its <tt>UncaughtExceptionHandler</tt>
* explicitly set, then its <tt>ThreadGroup</tt> object acts as its
* <tt>UncaughtExceptionHandler</tt>. If the <tt>ThreadGroup</tt> object
* has no
* special requirements for dealing with the exception, it can forward
* the invocation to the {@linkplain #getDefaultUncaughtExceptionHandler
* default uncaught exception handler}.
*
* @see #setDefaultUncaughtExceptionHandler
* @see #setUncaughtExceptionHandler
* @see ThreadGroup#uncaughtException
* @since 1.5
*/
@FunctionalInterface
public interface UncaughtExceptionHandler {
/**
* Method invoked when the given thread terminates due to the
* given uncaught exception.
* <p>Any exception thrown by this method will be ignored by the
* Java Virtual Machine.
* @param t the thread
* @param e the exception
*/
void uncaughtException(Thread t, Throwable e);
}

// null unless explicitly set
private volatile UncaughtExceptionHandler uncaughtExceptionHandler;

// null unless explicitly set
private static volatile UncaughtExceptionHandler defaultUncaughtExceptionHandler;

/**
* Set the default handler invoked when a thread abruptly terminates
* due to an uncaught exception, and no other handler has been defined
* for that thread.
*
* <p>Uncaught exception handling is controlled first by the thread, then
* by the thread's {@link ThreadGroup} object and finally by the default
* uncaught exception handler. If the thread does not have an explicit
* uncaught exception handler set, and the thread's thread group
* (including parent thread groups)  does not specialize its
* <tt>uncaughtException</tt> method, then the default handler's
* <tt>uncaughtException</tt> method will be invoked.
* <p>By setting the default uncaught exception handler, an application
* can change the way in which uncaught exceptions are handled (such as
* logging to a specific device, or file) for those threads that would
* already accept whatever &quot;default&quot; behavior the system
* provided.
*
* <p>Note that the default uncaught exception handler should not usually
* defer to the thread's <tt>ThreadGroup</tt> object, as that could cause
* infinite recursion.
*
* @param eh the object to use as the default uncaught exception handler.
* If <tt>null</tt> then there is no default handler.
*
* @throws SecurityException if a security manager is present and it
*         denies <tt>{@link RuntimePermission}
*         (&quot;setDefaultUncaughtExceptionHandler&quot;)</tt>
*
* @see #setUncaughtExceptionHandler
* @see #getUncaughtExceptionHandler
* @see ThreadGroup#uncaughtException
* @since 1.5
*/
public static void setDefaultUncaughtExceptionHandler(UncaughtExceptionHandler eh) {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
sm.checkPermission(
new RuntimePermission("setDefaultUncaughtExceptionHandler")
);
}

defaultUncaughtExceptionHandler = eh;
}

/**
* Returns the default handler invoked when a thread abruptly terminates
* due to an uncaught exception. If the returned value is <tt>null</tt>,
* there is no default.
* @since 1.5
* @see #setDefaultUncaughtExceptionHandler
* @return the default uncaught exception handler for all threads
*/
public static UncaughtExceptionHandler getDefaultUncaughtExceptionHandler(){
return defaultUncaughtExceptionHandler;
}

/**
* Returns the handler invoked when this thread abruptly terminates
* due to an uncaught exception. If this thread has not had an
* uncaught exception handler explicitly set then this thread's
* <tt>ThreadGroup</tt> object is returned, unless this thread
* has terminated, in which case <tt>null</tt> is returned.
* @since 1.5
* @return the uncaught exception handler for this thread
*/
public UncaughtExceptionHandler getUncaughtExceptionHandler() {
return uncaughtExceptionHandler != null ?
uncaughtExceptionHandler : group;
}

/**
* Set the handler invoked when this thread abruptly terminates
* due to an uncaught exception.
* <p>A thread can take full control of how it responds to uncaught
* exceptions by having its uncaught exception handler explicitly set.
* If no such handler is set then the thread's <tt>ThreadGroup</tt>
* object acts as its handler.
* @param eh the object to use as this thread's uncaught exception
* handler. If <tt>null</tt> then this thread has no explicit handler.
* @throws  SecurityException  if the current thread is not allowed to
*          modify this thread.
* @see #setDefaultUncaughtExceptionHandler
* @see ThreadGroup#uncaughtException
* @since 1.5
*/
public void setUncaughtExceptionHandler(UncaughtExceptionHandler eh) {
checkAccess();
uncaughtExceptionHandler = eh;
}

/**
* Dispatch an uncaught exception to the handler. This method is
* intended to be called only by the JVM.
*/
private void dispatchUncaughtException(Throwable e) {
getUncaughtExceptionHandler().uncaughtException(this, e);
}

/**
* Removes from the specified map any keys that have been enqueued
* on the specified reference queue.
*/
static void processQueue(ReferenceQueue<Class<?>> queue,
ConcurrentMap<? extends
WeakReference<Class<?>>, ?> map)
{
Reference<? extends Class<?>> ref;
while((ref = queue.poll()) != null) {
map.remove(ref);
}
}

/**
*  Weak key for Class objects.
**/
static class WeakClassKey extends WeakReference<Class<?>> {
/**
* saved value of the referent's identity hash code, to maintain
* a consistent hash code after the referent has been cleared
*/
private final int hash;

/**
* Create a new WeakClassKey to the given object, registered
* with a queue.
*/
WeakClassKey(Class<?> cl, ReferenceQueue<Class<?>> refQueue) {
super(cl, refQueue);
hash = System.identityHashCode(cl);
}

/**
* Returns the identity hash code of the original referent.
*/
@Override
public int hashCode() {
return hash;
}

/**
* Returns true if the given object is this identical
* WeakClassKey instance, or, if this object's referent has not
* been cleared, if the given object is another WeakClassKey
* instance with the identical non-null referent as this one.
*/
@Override
public boolean equals(Object obj) {
if (obj == this)
return true;

if (obj instanceof WeakClassKey) {
Object referent = get();
return (referent != null) &&
(referent == ((WeakClassKey) obj).get());
} else {
return false;
}
}
}


// The following three initially uninitialized fields are exclusively
// managed by class java.util.concurrent.ThreadLocalRandom. These
// fields are used to build the high-performance PRNGs in the
// concurrent code, and we can not risk accidental false sharing.
// Hence, the fields are isolated with @Contended.

/** The current seed for a ThreadLocalRandom */
@sun.misc.Contended("tlr")
long threadLocalRandomSeed;

/** Probe hash value; nonzero if threadLocalRandomSeed initialized */
@sun.misc.Contended("tlr")
int threadLocalRandomProbe;

/** Secondary seed isolated from public ThreadLocalRandom sequence */
@sun.misc.Contended("tlr")
int threadLocalRandomSecondarySeed;

/* Some private helper methods */
private native void setPriority0(int newPriority);
private native void stop0(Object o);
private native void suspend0();
private native void resume0();
private native void interrupt0();
private native void setNativeName(String name);
}