Some Advice and Ideas
Dev-Ops

Cliff McCollum <cliffmcc@gmail.com>



Dev-Ops

What? Why?



What is Dev-Ops?

* "DevOps (a clipped comg
culture, movement or pj A NICE BIG CUPﬂf

and communication of
information-technolog
process of software de |




What is Dev-Ops?

*You write It.
*You deploy it.
*You run It.
*You support It.

* You get paged in the
middle of the night.




Why would | want that?

* Greater Ownership
*Better code

* Faster bug-fixes

* Quicker Deploys

* Happier Customers




One Model

12 Factor App



One Codebase, in revision control, many
deploys

Codebase Deplnys
* If there are multiple codebases,
it's not an app —it's a distributed pruductlun
system.

* Multiple apps sharing the same
code is a violation of twelve-
factor.

develnper ’1

develnper 2




Explicitly declare and isolate
dependencies

* Atwelve-factor app never relies
on implicit existence of system-
wide packages.

 Declare all dependencies,
completely and exactly, via a
dependency declaration
manifest.



Store config in the environment

* Never store App config as constants in the code.
* Does not include internal app config (like URL enpoint lists).

* Could your code be made open-source without compromising any
credentials?

* Store config in environment variables.



Treat backing services as attached
resources

PostgreSQL

* A backing service is any service
the app consumes over the

network. _
Production

* Make no distinction between Deploy

local and third party services.
~——

Amazon S3




Strictly separate build, release, and run
stages

* Every change creates a new release.
* Every release has a unique release ID.
* Developers trigger build and release. Run is triggered automatically.




Execute the app as one or more
stateless processes

* Twelve-factor processes are stateless
and share-nothing.

* Persistence must be stored in a

stateful backing service (eg DB).
* Never rely on “sticky” sessions.
 Consider memcached or Redis.




Export services via port binding

* Make your app completely self-
contained.

* Build services as a process, binding on
a port.

* Encourages SOA.
* Use in-language servers like Tornado,

Thin, or Jetty. e
01 NN\




Scale out via the process model

* Processes are a first class citizen.
* Never daemonize or write PID files.

* Use a process manager like
Supervisor, Upstart, etc.

()
@
T
]
9
88
S s
N oD
=
=
c
5
o

Workload diversity
(process types)




Make servers and processes disposable

* PROCESSES r . 1

* App processes can be started or stopped
at a moment’s notice.

* Minimize startup time. Shutdown .

quickly to SIGTERM.
* Ultimate version: Crash-Only Design.

e SERVERS
 There should be no state on disk.
* Don’t patch — just rebuild. o

A y




Dev / Prod parity

» Keep development, staging, and
production as similar as possible.

* Watch for “secret gaps”:
* Personnel
* Configuration
* Time [Versions
* Tools
* Deploys

* Same backing services in all cases.



Treat logs as event streams

* Logs are a stream of all events from
all processes and backing services.

* An app should never concerns itself
with routing or storage of its output
stream. Just use STDOUT.




Run admin/management tasks as one-
off processes

* Run admin processes in the same
environment as the regular app
processes.

* Ship Admin code with the App.

* Use same isolation method as App
(VirtualEnv, etc).




The 13t Rule: Infrastructure as Code

* Don't rely on infrastructure you can’t
specify in code.

* Check your infrastructure into your
code-repository.

* Resist the urge to make manual
changes to your infrastructure.

* You can’t ensure Dev/Prod parity
without it.




