Skip to content

Latest commit

 

History

History

canisolator

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

\mainpage Main Page


CAN Isolator click

CAN Isolator click provides isolated CAN communication. It carries the ADM3053 signal and power isolated CAN transceiver with an integrated isolated DC-to-DC converter.

click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : UART type

Software Support

We provide a library for the CanIsolator Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for CanIsolator Click driver.

Standard key functions :

  • Config Object Initialization function.

void canisolator_cfg_setup ( canisolator_cfg_t *cfg );

  • Initialization function.

CANISOLATOR_RETVAL canisolator_init ( canisolator_t *ctx, canisolator_cfg_t *cfg );

  • Click Default Configuration function.

void canisolator_default_cfg ( canisolator_t *ctx );

Example key functions :

  • Generic multi write function.

void canisolator_generic_multi_write ( canisolator_t *ctx, canisolator_data_t *data_buf, uart_length_t len );

  • Generic multi read function.

void canisolator_generic_multi_read ( canisolator_t *ctx, canisolator_data_t *data_buf, uart_length_t len );

  • Generic single read function.

canisolator_data_t canisolator_generic_single_read ( canisolator_t *ctx );

  • Generic single write function.

void canisolator_generic_single_write ( canisolator_t *ctx, canisolator_data_t tx_data );

Examples Description

This is a example which demonstrates the use of Can Isolator Click board.

The demo application is composed of two sections :

Application Init

Configuring clicks and log objects.

void application_init ( void )
{
    log_cfg_t log_cfg;
    canisolator_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_printf( &logger, "---- Application Init ----\r\n" );

    //  Click initialization.

    canisolator_cfg_setup( &cfg );
    CANISOLATOR_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    canisolator_init( &canisolator, &cfg );
    
    log_printf( &logger, "---------------------\r\n" );
    log_printf( &logger, " CAN Isolator  Click\r\n" );
    log_printf( &logger, "---------------------\r\n" );
    Delay_ms ( 100 );
}
  

Application Task

Checks if new data byte has received in RX buffer ( ready for reading ) and if ready than reads one byte from RX buffer. In the second case, the application task writes message data via UART. Results are being sent to the Usart Terminal where you can track their changes.

void application_task ( void )
{
    canisolator_data_t tmp;
    
    //  Task implementation.
    
#ifdef DEMO_APP_RECEIVER

    // RECEIVER - UART polling

    tmp =  canisolator_generic_single_read( &canisolator );
    log_printf( &logger, " %c ", tmp );
    
#endif
#ifdef DEMO_APP_TRANSMITER

    // TRANSMITER - TX each 2 sec
    
    uint8_t cnt;
        
    for ( cnt = 0; cnt < 9; cnt ++ )
    {
        canisolator_generic_single_write( &canisolator, demo_message[ cnt ] );
        Delay_ms ( 100 );
    }
    
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    
#endif

}

Note

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.CanIsolator

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.